随着COVID-19现在普遍存在,对高危个体的识别至关重要。利用来自宾夕法尼亚州西南部主要医疗保健提供者的数据,我们开发了预测严重Covid-19进展的生存模型。在这项工作中,我们在依赖许多功能的更准确模型和依赖一些与临床医生直觉相一致的功能的模型之间面临一个权衡。使事情变得复杂,许多EHR功能往往较低,从而降低了较小模型的准确性。在这项研究中,我们开发了两组高性能风险评分:(i)由所有可用功能构建的无约束模型;(ii)在训练风险预测因子之前,在培训风险预测因子之前就学习一小部分临床概念的管道。学到的概念提高了相应特征(C-Index 0.858 vs. 0.844)的性能,并在评估样本外(随后的时间段)时证明了(i)的改进。我们的模型表现优于先前的工作(C-Index 0.844-0.872 vs. 0.598-0.810)。
translated by 谷歌翻译
Data trading is essential to accelerate the development of data-driven machine learning pipelines. The central problem in data trading is to estimate the utility of a seller's dataset with respect to a given buyer's machine learning task, also known as data valuation. Typically, data valuation requires one or more participants to share their raw dataset with others, leading to potential risks of intellectual property (IP) violations. In this paper, we tackle the novel task of preemptively protecting the IP of datasets that need to be shared during data valuation. First, we identify and formalize two kinds of novel IP risks in visual datasets: data-item (image) IP and statistical (dataset) IP. Then, we propose a novel algorithm to convert the raw dataset into a sanitized version, that provides resistance to IP violations, while at the same time allowing accurate data valuation. The key idea is to limit the transfer of information from the raw dataset to the sanitized dataset, thereby protecting against potential intellectual property violations. Next, we analyze our method for the likely existence of a solution and immunity against reconstruction attacks. Finally, we conduct extensive experiments on three computer vision datasets demonstrating the advantages of our method in comparison to other baselines.
translated by 谷歌翻译
机器学习的普及增加了不公平模型的风险,该模型被部署在高级应用程序中,例如司法系统,药物/疫苗接种设计和医学诊断。尽管有有效的方法可以从头开始训练公平模型,但如何自动揭示和解释受过训练的模型的不公平仍然是一项艰巨的任务。以可解释的方式揭示机器学习模型的不公平是朝着公平和值得信赖的AI迈出的关键一步。在本文中,我们系统地解决了通过挖掘可解释的证据(Rumie)来揭示不公平模型的新任务。关键思想是以一组模型区分的数据实例的形式找到可靠的证据。为了使证据可以解释,我们还找到了一组人为理解的关键属性和决策规则,这些属性和决策规则表征了歧视的数据实例,并将其与其他非歧视数据区分开来。正如在许多现实世界数据集上进行的广泛实验所证明的那样,我们的方法找到了高度可解释和可靠的证据,可以有效揭示受过训练的模型的不公平性。此外,它比所有基线方法更可扩展。
translated by 谷歌翻译
在现实世界中,物体的发生频率是自然倾斜的形成长尾级分布,这导致统计上罕见的阶级的性能不佳。有希望的解决方案是挖掘尾级示例以平衡培训数据集。但是,采矿尾级示例是一个非常具有挑战性的任务。例如,由于数据中的偏差导致的类概率失真,大多数基于不确定性的挖掘方法接近斗争。在这项工作中,我们提出了一种有效,但简单的方法来克服这些挑战。我们的框架增强了Subdued Tail-Class的激活,此后,使用单级数据为中心的方法来有效地识别尾级示例。我们对三个数据集的框架进行了详尽的评估,这些数据集超过了两台计算机愿景任务。少数民族挖掘和微调模型的性能大量改善强烈证实了我们提出的解决方案的价值。
translated by 谷歌翻译